
UIGV
15

COMTEL 2012
V Congreso Internacional de Computación y Telecomunicaciones

COMTEL 2013
V Congreso Internacional de Computación y Telecomunicaciones 11

Notification Oriented Paradigm (NOP) and Object Oriented Paradigm (OOP):
A Comparative Study by means of a Sale Order System

Cleverson Avelino Ferreira3, Dr. Jean M. Simão1, Dr. Paulo Cézar Stadzisz1, Márcio V. Batista2
cleversonavelino@gmail.com, jeansimao@utfpr.edu.br, stadzisz@utfpr.edu.br, marcio.venancio@gmail.com

1 Professors at Graduate School in Electrical Eng. & Industrial Computer Science (CPGEI) and Graduate School of Applied
Computing (PPGCA). 2 Masters Degree Student at CPGEI/UTFPR. 3 Masters Degree Student at PPGCA/UTFPR.

Federal University of Technology, Brazil
Av. 7 de Setembro, 3165

Curitiba - Brazil

Abstract: This paper presents a comparative study between Notification Oriented Paradigm (NOP) and Object
Oriented Paradigm (OOP) by means as an experiment. The OOP has problems which can lead the developers to build
systems with low quality. These problems are related to unnecessary casual expressions evaluation (i.e. if-then
statements or similar) and higher software entity coupling. In this context, Notification-Oriented Paradigm (NOP)
presents an alternative for those issues. NOP proposes another way to structure software and make its inference, which
is based on small, collaborative, and decoupled computational entities whose interaction happens through precise
notifications. This paper presents a quantitative comparison, time evaluation performance, between two equivalent
versions of a sale system, one developed according to the principles of OOP in C++ and another developed according
to the principles of NOP based on a current NOP framework over C++. The experiment results have shown that OOP
version has obtained better runtime perform-ance than NOP implementation. This happened because the NOP
framework uses considerable expensive data-structures over C++. Thus, it is necessary a real compiler to NOP or at
least a highly optimized NOP framework in order to use its potentiality indeed. Besides, in a scenario variation of
approvable causal expressions, the experiment results have shown an increase in the number of causal expression
unnecessary evaluated in OOP version, whereas the NOP version does not present unnecessary causal expression
evaluation. Indeed, by definition, NOP application does not waste execution time unnecessarily evaluating causal
expressions.

Keywords: Notification Oriented Paradigm, Notification Oriented Inference, NOP and IP Comparison.

1 Introduction
This section mentions drawbacks from current
programming paradigms, introduces Notification Oriented
Paradigm (NOP) as a new solution, and presents paper
objectives.

1.1 Review Stage
The computational processing power has grown each year
and the tendency is that technology evolution contributes
to the creation of still faster processing technologies [1].
Even if this scenario is positive in terms of pure
technology evolution, in general it does not motivate
information-technology professionals to optimize the use
of processing resources when they develop software [2].

This behavior has been tolerated in standard software
development where there is no need of intensive
processing or processing constraints. However, it is not
acceptable to certain software classes, such as software
for embedded systems [3]. Such systems normally employ
less-powerful processors due to factors such as constraints
on power consumption and system price to a given market
[4].

Besides, computational power misusing in software can
also cause overuse of a given standard processor,
implying in execution delays [3][5]. Still, in complex
software, this can even exhaust a processor capacity,
demanding faster processor or even some sort of
distributions (e.g. dual-core) [3][6]. Indeed, an

optimization-oriented programming could avoid such
drawbacks and related costs [3][7].

Therefore, suitable engineering tools for software
development, namely programming languages and their
environments, should facilitate the development of
optimized and correct code [8][9][10][11]. Otherwise,
engineering costs to produce optimized-code could
exceed those of upgrading the processing capacity
[3][8][9][10].

Still, suitable tools should also make the development of
distributable code easy once, even with optimized code,
distribution may be actually demanded in some cases [14]
[15][16][17]. However, the distribution is itself a problem
once, under different conditions, it could entail a set of
(related) problems, such as complex load balancing,
communication excess, and hard fine-grained distribution
[3][14][15][18].

In this context, a problem raises from the fact that usual
programming languages (e.g. Pascal, C/C++, and Java)
present no real facilities to develop optimized and really
distributable code, particularly in terms of fine-grained
decoupling of code [2][3][18][19]. This happens due to
the structure and execution nature imposed by their
paradigm [6][8][9].

1.2 Imperative and Declarative
Programming

Usual programming languages are based on the
Imperative Paradigm, which cover sub-paradigms such as

Memoria COMTEL 2012 lista.pdf 16/10/2013 09:32:38 a.m. - 15 - ()

UIGV
16

COMTEL 2013
V Congreso Internacional de Computación y Telecomunicaciones

COMTEL 2013
V Congreso Internacional de Computación y Telecomunicaciones 12

Procedural and Object Oriented ones [9][20][21]. Besides,
the latter is normally considered better than the former
due to its richer abstraction mechanism. Anyway, both
present drawbacks due to their imperative nature
[9][20][22].

Essentially, Imperative Paradigm imposes loop-oriented
searches over passive elements related to data (e.g.
variables, vectors, and trees) and causal expressions (i.e.
if-then statements or similar) that cause execution
redundancies. This leads to create programs as a
monolithic entity comprising prolix and coupled code,
generating non-optimized and interdependent code
execution [7][8] [22][23].

Declarative Paradigm is the alternative to the Imperative
Paradigm. Essentially, it enables a higher level of
abstraction and easier programming [21][22]. Also, some
declarative solutions avoid many execution redundancies
in order to optimize execution, such as Rule Based
System (RBS) based on Rete or Hal algorithms
[24][25][26][27]. However, programs constructed using
usual languages from Declarative Paradigm (e.g. LISP,
PROLOG, and RBS in general) or even using optimized
solution (e.g. Rete-driven RBS) also present drawbacks
[7][8].

Declarative Paradigm solutions use computationally
expensive high-level data structures causing considerable
processing overheads. Thus, even with redundant code,
Imperative Paradigm solutions are normally better in
performance than Declarative Paradigm solutions [9][28].
Furthermore, similarly to the Imperative Paradigm
programming, the Declarative Paradigm programming
also generates code coupling due to the similar search-
based inference process [3][7][22].

Still, other approaches between them, such as event-
driven and functional programming, do not solve these
problems even if they may reduce some problems, like
reduce certain redundancies [23][28]. Actually, all these
issues have been minutely taken into account in previous
works, e.g. [3][7][8][9][9].

1.3 Development Issues & Solution
Perspective

As a matter of fact, there are software development issues
in terms of ease composition of optimized and
distributable code [3][7][8]. Therefore, this impels new
solutions to make simpler the task of building better
software. In this context, a new programming paradigm,
called Notification Oriented Paradigm (NOP), was
proposed in order to solve some of the highlighted
problems [3][7][8].

The NOP embryonic basis was initially proposed by J. M.
Simão as a manufacturing discrete-control solution
[12][29]. This solution was evolved as general discrete-
control solution and then as a new inference-engine
solution [3], achieving finally the form of a new
programming paradigm [7][8][9].

The essence of NOP is its inference process based on
small, smart, and decoupled collaborative entities that
interact by means of precise notifications [3]. This solves

redundancies and centralization problems of the current
causal-logical processing, thereby solving processing
misuse and coupling issues of current paradigms
[3][7][8][9].

1.4 Paper Context and Objective
This paper discusses NOP as a solution to certain current
paradigm deficiencies. Particularly, the paper presents a
performance study, in a mono-processed case, related to a
program based on NOP compared against an equivalent
program based on Imperative/Object-Oriented Paradigm.

The NOP program is elaborated in the current NOP
framework over C++, whereas the OOP program is
elaborated in C++. Thus, an objective of this paper is
evaluated the current NOP materialization in terms of
performance, which is available to use as a result of a M.
Sc. Thesis [51].

2 Notification Oriented Paradigm
(NOP)

The Notification Oriented Paradigm (NOP) introduces a
new concept to conceive, construct, and execute software
applications. NOP is based upon the concept of small,
smart, and decoupled entities that collaborate by means of
precise notifications to carry out the software inference
[3] [7]. This allows enhancing software applications
performance and potentially makes easier to compose
software, both non-distributed and distributed ones [9].

Figure 1. Rule Entity.

2.1 NOP Structural View
NOP causal expressions are represented by common
causal rules, which are naturally understood by
programmers of current paradigms. However, each rule is
technically enclosed in a computational-entity called Rule
[8]. In Figure 1, there is a Rule content example, which
would be related to the Sale System detailed in the next
section.

Structurally, a Rule has two parts, namely a “Condition”
and an “Action”, as shown by means of the UML class
diagram in Figure 2. Both are entities that work together
to handle the causal knowledge of the Rule
computational-entity. The Condition is the decisional part,
whereas the Action is the execution part of the Rule. Both
make reference to factual elements of the system [8].

NOP factual elements are represented by means of a
special type of entity called “Fact_Base_Element” (FBE).
A FBE includes a set of attributes. Each attribute is
represented by another special type of entity called
“Attribute” [8]. Attributes states are evaluated in the
Conditions of Rules by associated entities called
“Premisses”. In the example, which is shown by the

Memoria COMTEL 2012 lista.pdf 16/10/2013 09:32:38 a.m. - 16 - ()

UIGV
17

COMTEL 2012
V Congreso Internacional de Computación y Telecomunicaciones

COMTEL 2013
V Congreso Internacional de Computación y Telecomunicaciones 13

figure 1, the Condition of the Rule is associated to three
Premises, which verify the FBE Attributes state as follow:
1) Is the product branch perishable? 2) Is the product
valid? 3) Is the product perishable date? [8].

When each Premise of a Rule Condition is true, which is
concluded via a given inference process, the Rule
becomes true and can activate its Action composed of
special-entities called “Instigations”. In the considered
Rule, the Action “has” only one Instigation that makes the
System shows a message that the product is perishable
[8].

Instigations are linked to and instigate the execution of
“Methods”, which are another special-entity of FBE. Each
Method allows executing services of its FBE. Generally,
the call of FBE Method changes one or more FBE
Attribute states, thereby feeding the inference process [8].

FB E

M e th o d A ttr ib u te

1 ..*0 ..*

Change S ta te **

P re m ise

N otify S ta te

0 ..*

1 ..2

C o n d itio n

N otify S ta te
0 ..*

1 ..*

R u le

< < N O P> >

1

A ctio n

1

In stig a tio n

Activa te
1 ..*

0 ..*

In stiga te
1 ..*

0 ..*

< < N O P> >

< < N O P> >

< < N O P> >

< < N O P> >

< < N O P> > < < N O P> >

< < N O P> >

FB E

M e th o d A ttr ib u te

1 ..*0 ..*

Change S ta te **

P re m ise

N otify S ta te

0 ..*

1 ..2

C o n d itio n

N otify S ta te
0 ..*

1 ..*

R u le

< < N O P> >

1

A ctio n

1

In stig a tio n

Activa te
1 ..*

0 ..*

In stiga te
1 ..*

0 ..*

< < N O P> >

< < N O P> >

< < N O P> >

< < N O P> >

< < N O P> > < < N O P> >

< < N O P> >

Figure 2. Rule and Fact_Base_Element class diagram.

2.2 NOP Inference Process
The inference process of NOP is innovative once the
Rules have their inference carried out by active
collaboration of its notifier entities [3]. In short, the
collaboration happens as follow: for each change in an
Attribute state of a FBE, the state evaluation occurs only
in the related Premises and then only in related and
pertinent Conditions of Rules by means of punctual
notifications between the collaborators.

In order to detail this Notification Oriented Inference, it is
firstly necessary to explain the Premise composition. Each
Premise represents a Boolean value about one or even two
Attribute state, which justify its composition: (a) a
reference to an Attribute discrete value, called Reference,
which is received by notification; (b) a logical operator,
called Operator, useful to make comparisons; and (c)
another value called Value that can be a constant or even
a discrete value of other referenced Attribute.

A Premise makes a logical calculation when it receives
notification of one or even two Attributes (i.e. Reference
and even Value). This calculation is carried out by

comparing the Reference with the Value, using the
Operator. In a similar way, a Premise collaborates with
the causal evaluation of a Condition. If the Boolean value
of a notified Premise is changed, then it notifies the
related Condition set.

Thus, each notified Condition calculates their Boolean
value by the conjunction of Premises values. When all
Premises of a Condition are satisfied, a Condition is also
satisfied and notifies the respective Rule to execute.

The collaboration between NOP entities by means of
notifications can be observed at the schema illustrated in
Figure 3. In this schema, the flow of notifications is
represented by arrows linked to rectangles that symbolize
NOP entities.

An important point to clarify about NOP collaborative
entities is that each notifier one (e.g. Attributes) registers
its client ones (e.g. Premises) in their creation. For
example, when a Premise is created and makes reference
to an Attribute, the latter automatically includes the
former in its internal set of entities to be notified when its
state change.

Figure 3. Notification chain of Rules and collaborators [3]

2.3 NOP Implementation
In order to provide the use of these solutions before the
conception of a particular language and compiler, the
NOP entities were materialized in C++ programming
language in the form of a framework and the applications
developed have been made just by instantiating this
framework [9]. Moreover, to make easier this process, a
prototypal wizard tool has been proposed to automate this
process.

It is a tool that generates NOP smart-entities from rules
elaborated in a graphical interface. In this case,
developers “only” need to implement FBEs with
Attributes and Methods, once other NOP special-entities
will be composed and linked by the tool. This allows
using the time to the construction of the causal base (i.e.
composition of NOP rules) without concerns about
instantiations of the NOP entities.

3 The Sale Order System
In order to do a comparison between Notification
Oriented Paradigm (NOP) and Oriented Object Paradigm
(OOP), a Sales Order System was created. This system
was used as a case of study with proposal to observe the
elapsed time in two test scenarios.

Memoria COMTEL 2012 lista.pdf 16/10/2013 09:32:38 a.m. - 17 - ()

UIGV
18

COMTEL 2013
V Congreso Internacional de Computación y Telecomunicaciones

COMTEL 2013
V Congreso Internacional de Computación y Telecomunicaciones 14

The OO version was built over C++ language and the
NOP version runs with NOP framework. This framework
was created over C++.

3.1 Requirements
The proposed software system, thought to lead the
comparison between NOP and OOP versions, has the
following functional requirements and non-functional
requirements:

FR1 The system shall allow selling products.
Table 1. Functional Requirements.

SFR1.1 The system do not allow selling products
with stock equals zero

SFR1.2 The system shall allow sending more than
one product per sale order

SFR1.3 The system shall persist the sale order
information

SFR1.4 The system has to calculate the total price of
sale regarding customer classification.

Table 2. Sub - Functional Requirements for Functional
Requirement 1.

NFR1 To be implemented in two versions, OOP in
C++ and NOP Framework over C++.

Table 3. Non – Functional Requirements.

3.2 Sale Order System – Structure
In order to build the Sale Order System a Class Diagram
was created. This diagram shows the components that had
to be developed. Fig. 4 shows the Sales Order System
class diagram.

Figure 4. Sale Order System (NOP and OOP) class

diagram

As seen in Fig. 4 the most important class is the
SalesOrder. This class has an association with Customer,
PaymentForm and SalesOrderItensList classes. The
SalesOrderItensList has been used to support an
association with SalesOrderItem which is used to
maintain the information about the selected products.

3.3 Sale Order System – Execution
The sale starts with the customer code that passes through
verification if the customer has the system access. After
that, the customer has to choose the payment form type.
There are just two payment ways available, which are in
cash and installment payment.

The Sale process continues asking to the customer what
products he wants to buy and checks if the product is
available in the stock. After, the System has to calculate
the discount price for the product. On the customer profile
has a parameter which is used to inform the classification
type of the customer. This classification is used to provide

a special form of discount to certain customers. There is a
sort of customer classification types that allows discount
from 5% up to 95%.

After the whole cycle of product insertion in the sales
order, the sale can be closed. If the customer chooses
installment payment form, the system has to check if the
customer has available credit limit to buy the desired
items. Actually, the system has the information about the
credit limit of the customers.

3.4 Implementation details
The first system version made was in OOP. The fig. 5
shows the code in OOP with causal expressions used to
give the discount percentage for a Customer Sales Order.
This piece of code was chosen because describes the most
important part from the discount calc process. Each if
statement is responsible to evaluate the customer type.
Once the statement results a true condition the discount
percentage is returned by the method. There are many
customer types and for each evaluation many if statements
are evaluated unnecessarily which shows a waste of
processing time.

Figure 5. OOP code for discount type.

Once the development of OOP version was finished, the
development of NOP version was taken into account. In
this version the same patterns were used. However, of-
course, there are differences between OOP and NOP
implementations. Fig. 5 and Fig. 6 show the respective
differences between the two implementations to give a
discount price by the customer type.

Figure 6. NOP code for discount type.

Memoria COMTEL 2012 lista.pdf 16/10/2013 09:32:39 a.m. - 18 - ()

UIGV
19

COMTEL 2012
V Congreso Internacional de Computación y Telecomunicaciones

COMTEL 2013
V Congreso Internacional de Computación y Telecomunicaciones 15

The difference between the applications could be
observed by means of causal expressions. There are no
more if-then causal tests and nested code in NOP version.
The entire sale flow is governed by Rules, Conditions,
Premises, Attributes, and other collaborator smart entities.
Every time which an Attribute has its state changed, it
starts a notification process.

The fig. 10 particularly shows the code used in NOP
application. This piece of code was written in the
SalesOrder class constructor. There were configured in
the SalesOrder class two Attributes in order to return the
discount percentage for the Sales Order.

The first Attribute is called atTypeDiscount which is used
to configure the customer type value. The second
Attribute is called atPercDiscount which is used by the
System to get the percentage discount value.

When the System starts, the atTypeDiscount Attribute is
configured with the default value. This configuration is
shown in the first line of the code.

The second line shows a for statement which is used to
create the Rules that have to control the type of discount
given.

The atPercDiscount Attribute is used by the System when
it is necessary to know the percentage discount for a
specific Product that the Customer is adding into his Sales
Order.

As known there are twenty Customer type possibilities
and every loop iteration allows creating one Rule which is
responsible for evaluating a specific Customer type and
determines the percentage discount. Inside each Rule is
configured a Premise and a Method.

In the fourth line is configured a Premise which is
responsible to receive the atTypeDiscount Attribute that is
used by the notification process. The value used to do this
comparison is the second parameter, the variable i, that in
each loop iteration is configured with an increment by
one. The third parameter shows the expected behavior
when the atTypeDiscount Attribute has its value changed.
The system has to evaluate a Premise comparing if the
atTypeDiscount is equal than the i value.

In turn, in the fifth line it was added a Method which is
responsible to configure the discount value at the
atPercDescount Attribute. According with the NOP
structure it is necessary, at this point, create an Instigation
Object that is used by the inference process to call the
related method, but with the improvements achieved by
the NOP framework [51] when it is created a new Method
the framework will create all the necessary objects to
make the Rule works correctly, in this case the necessary
objects are Actions and Instigations Objects. The third
parameter in this method is used to get the percentage
value and set at the atPercDescount when this method is
invoked by the notification process.

The notification process to configure the discount
percentage starts when the atTypeDiscount Attribute
receives a new Customer type value. The new Customer
type value will be configured at the atTypeDiscount
Attribute every time that the Customer is registered at a

new Sales Order. Thereafter, all related Premisses will be
evaluated in order to compare its Conditions with the new
atTypediscount value.

When a specific Condition results in a true state the Rules
becomes true and can activate its Actions that are
composed of special-entities called Instigations. The
Instigation, in this case, will instigate the execution of a
related Method to set the configured value at the
atPercDescount.

4 A Performance Study
This section presents a performance study between the
OOP and NOP Sales Order versions. The objective of this
study is to show the tests performance evaluation about
these two versions.

In order to provide the evaluation, an amount of Sales
Orders were executed from each version. The main goal
was to verify how long time each version takes to finish
the process. There were made two types of
experimentation which will be discussed in the next
sections.

4.1 First Experiment and results
The experiments are performed using the optimized
version of NOP. In this version the NOP Framework
structure, which includes the notification chain, was
changed with some optimizations and refactoring with
respect to two previous versions. According with [51]
these improvements have achieved 50% of performance
time gain with respect to the last preview version.

Once this considered, the expectation of this first
experiment was to verify the time performance in the
current Sale Order System of its implementation in the
current NOP framework against its implementation in the
OOP.

The first experiment was designed to evaluate the
performance of each implementation/application in order
to create 100, 1000, and 10000 combinations of
predetermined sales order. Each customer, product, and
payment form will generate one sales order combination.

At the table 4 it is possible to observe the data used in this
first experiment. These data present four Customers
which start with identification 1 to 4 and type 1 to 4. Also,
there are two Products with identification 1 and 2 and two
available payment forms.

The configuration to execute this first experiment has
been developed to get low causal expression evaluation
by means the value type which was configured in each
Customer. For each Customer type, the System will
calculate a discount price for the Product and for each
Customer type in the OOP version it is necessary to verify
this information though a set causal expressions (“ifs”)
where frequently most of them are unnecessarily
evaluated.

For example, if the customer is from the type 19, the
system will evaluate 18 unnecessary causal expressions
until get the right decision. In the NOP application, in
turn, the notifiable Rules and its collaborators are
responsible to manage this behavior.

Memoria COMTEL 2012 lista.pdf 16/10/2013 09:32:39 a.m. - 19 - ()

UIGV
20

COMTEL 2013
V Congreso Internacional de Computación y Telecomunicaciones

COMTEL 2013
V Congreso Internacional de Computación y Telecomunicaciones 16

Table 4. First experiment content.

This experiment has been made using an Operational
System (OS) Windows 7 and a computer Intel processor
with 1.30 Giga hertz and 2 Giga bytes of RAM memory.

The table 5 shows the performance evaluation of the Sales
Order System. The second column shows the Elapsed
time that OOP took to perform the correspondent amount
of sales. The third column shows the number of causal
expression in OOP which are used to manage the
expected result. Finally, the fourth column shows the
elapsed time from NOP version to create the
correspondent amount of Sales Order.

Still, this table shows that OOP version had a less
execution time when compared with the NOP version.
But the number of causal expressions evaluated with OOP
version in this first experiment was extremely large. In
turn, in the NOP version due to the use of its Rules and its
smart collaborators Entities the number of causal
expression evaluated is irrelevant or equals one.

In this case of study is important to say that the NOP
version uses the current NOP Framework built over the
C++ programming language which can cause some
drawbacks, such as the overhead of using computationally
expensive data-structure over an intermediary language.

Table 5. First experiments results.

4.2 Second Experiment and results
In this second experiment the number of causal
expression evaluation has increased. As seen in the table
6, the customer configuration type has been changed to
the worse case. Thus, the customer type has changed to
the last options which are evaluated by the causal
expressions. In this situation the OOP application has to
evaluate a great amount of causal expressions which
cause a processor waste of time.

Table 6. Second experiment content.

The table 7 shows the results of the second experiment
between both versions. Again, this second experiment has
shown a less execution time from OOP when compared
with the NOP version to run the experiment. As shown in
the table 7 the number of causal expression evaluated has
increased as well.

Table 7. Second experiments results.

4.3 Additional comparison
This section will discuss the elapsed execution time
difference between both versions. It is necessary to show
how important is to observe this situation. Here, both
table 8 and table 9 shows a different scenario of
comparison. In these scenarios is evaluated the
performance between the first and second experiment for
each application version, i.e. NOP and OOP versions.

As seen in table 8, the first column shows the total
amount of sales order created. The second column shows
the elapsed execution time taken from the first
experiment. The third column shows the elapsed
execution time taken by the second experiment and the
fourth column shows the percentage difference between
the execution time from both versions.

In the NOP version, which is show in the table 8, it is
possible to observe that the elapsed execution time
between the first and second experiment did not
considerably increase. It was because the type of
evaluation done using NOP application which uses smart
entities and Rules to manage the expected behavior.

In the OOP version, which is show in the Table 9, it is
possible to observe an execution time increasing between
the first and second experiments. As seen before, the
number of causal expression evaluated within both
scenarios was extremely different. In the first experiment
these number of expressions were lower than the second
experiment which describes why the first experiment has
less execution time when compared with the second
experiment.

Memoria COMTEL 2012 lista.pdf 16/10/2013 09:32:39 a.m. - 20 - ()

UIGV
21

COMTEL 2012
V Congreso Internacional de Computación y Telecomunicaciones

COMTEL 2013
V Congreso Internacional de Computación y Telecomunicaciones 17

Table 8. NOP - Increase of time because of causal

expressions.

Table 9. OOP - Increase of time because of causal

expressions.

Through this comparison it is possible to observe the
behavior differences between both versions by means the
causal expression evaluation. The OOP version has shown
an execution time increase in the second experiment
compared with the first experiment in order to create the
same amount of sales order. In turn, the NOP version has
presented that the execution time from both versions were
almost the same which shows that NOP version has not
wasted the execution time to evaluating causal expression
unnecessarily.

5 Conclusion and Future Works
This section discusses NOP properties and NOP
Performance.

5.1 NOP Features
NOP would be an instrument to improve applications’
performance in terms of causal calculation, especially of
complex ones such as those that execute permanently and
need excellent resource use and response time. This is
possible thanks to the notification mechanism, which
allows an innovative causal-evaluation process with
respect to those of current programming paradigms
[1][8][9][10][30].

The notification mechanism is composed of entities that
collaboratively carry out the inference process by means
of notifications, providing solutions to deficiencies of
current paradigms [1]. In this context, this paper
addressed the performance subject making some
comparisons of NOP and Imperative Programming
instances.

5.2 NOP Performance
As demonstrated in this paper, NOP could decrease the
loss of processing time to evaluate causal expressions
unnecessary by means of its innovative notification
mechanism [3][7].

This mechanism assures that each change of “variable”
(i.e. FBE Attribute) state activates only the strictly
necessary evaluations of logical and causal expressions
(i.e. Premises and Conditions of Rules) [3][9]. It was
possible to see this behavior with the presented
comparisons in this paper.

Also, NOP would improve the performance by sharing
the results of logic evaluation (i.e. notification of
Premises) between causal evaluations (i.e. execution of
Conditions), therefore avoiding unnecessary repetitions of

code and processing in the execution of the Rules [3].
Thus, temporal and structural redundancies are avoided
by NOP, theoretically guarantying suitable performance
by definition [3]. Still, NOP has been analyzed through an
Asymptotic Analysis of the Complexity. The result of this
analysis has shown that NOP implies an O(n) complexity
which is an excellent result [12].

Furthermore, some optimization of NOP implementation
may provide better results than the current results, namely
in terms of runtime performance. Certainly, these
optimizations are related to the development of a
particular compiler to solve some drawbacks of the actual
implementation of NOP, such as the overhead of using
computationally expensive data-structure over an
intermediary language. These advances are under
consideration in other works.

References
[1] R.W. Keyes. “The Technical Impact of Moore's

Law”. IEEE solid-state circuits society newsletter.
IBM T. J. Watson Research Center, 2006.

[2] E.S. Raymond, “The Art of UNIX Programming”,
pp.327, A.Wesley, 2003.

[3] J. M. Simão, P. C. Stadzisz, “Inference Based on
Notifications: A Holonic Meta-Model Applied to
Control Issues”. IEEE Transaction on System., Man,
and Cybernetics, Part A V. 9 Issue 1 Pg 238-250,
2009. Doi. 10.1109/TSMCA.2008.2006371.

[4] W. Wolf, “High-Performance Embedded
Computing: Architectures, Applications”, and
Methodologies. Morgan Kaufmann, 2007.

[5] S. Oliveira, D. Stewart, “Writing Scientific
Software: A Guided to Good Style”. Cambridge
Univ. Press, 2006.

[6] C. Hughes and T. Hughes. Parallel and Distributed
Programming Using C++. Addison Wesley, 2003.

[7] J. M. Simão, P. C. Stadzisz, “Paradigma Orientado a
Notificações (PON) - Uma Técnica de Composição
e Execução de Software Orientada a Notificações”.
Patent pending submitted to INPI/Brazil in 2008 and
UTFPR Innovation Agency 2007. N.: PI0805518-1.

[8] R. F. Banaszewski, P.C. Stadzisz, C.A. Tacla, J. M
Simão, “Notification Oriented Paradigm (NOP): A
Software Development Approach based on Artificial
Intelligence Concepts”. VI Congress of Logic
Applied to the Technology, Paper 216, Santos,
Brazil, 2007.

[9] R.F. Banaszewski, “Paradigma Orientado a
Notificações: Avanços e Comparações”. M.Sc.
Thesis, CPGEI/UTFPR. Curitiba-PR, 2009.

[10] M. Herlihy, N. Shavit, The Art of Multiprocessor
Programming. Morgan Kaufmann, 2008.

[11] D. Harel, H. Lacover, A. Naamad, A. Pnueli, M.
Politi, R. Sherman, A. Shtulltrauting, M.
Trakhtenbrot. “Statemate: a working environment
for the development of complex reactive systems”
IEEE Transaction on Software Engineering. V. 16,
n. 4, pp. 403-416, 1990.

Memoria COMTEL 2012 lista.pdf 16/10/2013 09:32:39 a.m. - 21 - ()

UIGV
22

COMTEL 2013
V Congreso Internacional de Computación y Telecomunicaciones

COMTEL 2013
V Congreso Internacional de Computación y Telecomunicaciones 18

[12] J. M. Simão, “A Contribution to the Development of
a HMS simulation tool and Proposition of a Meta-
Model for Holonic Control”. Ph.D. Thesis
CPGEI/UTFPR/Brazil & CRAN/UHP/France, 2005.
http://tel.archives-
ouvertes.fr/docs/00/08/30/42/PDF/ThesisJeanMSima
oBrazil.pdf.

[13] B. D. Wachter, T. Massart, C. Meuter. “dSL: An
Environment with Automatic Code Distribution for
Industrial Control Systems”, Proc. of the 7th Int.
Conf. on Principles of Distributed Syst., 2003, La
Martinique, France, V. 3144 of LNCS, pg 132-45,
Springer, 2004.

[14] D. Sevilla, J.M. Garcia, A. Gómez. “Using AOP to
Automatically Provide Distribution, Fault Tolerance,
and Load Balancing to the CORBA-LC Component
Model”. Parallel Computing: Architectures,
Algorithms, and Applications, J. von Neumann
Institute for Computing, Jülich, NIC Series, V.38,
2007. Reprinted: Advances in Parallel Computing,
V. 15, 2008.

[15] W. M. Johnston, J. R. P. Hanna, R. J. Millar,
“Advance in Dataflow Programming Languages”.
Journal ACM Computing Surveys, Volume 36, No.
1, pp. 1-34, march 2004.

[16] G. Coulouris, J. Dollimore, T. Kindberg,
“Distributed Systems – Concepts and Designs”.
Reading, MA: Addison-Wesley, 2001.

[17] W. A. Gruver, “Distributed Intelligence Systems: A
new Paradigm for System Integration”. Proceedings
of the IEEE International Conference on Information
Reuse and Integration (IRI), pg 14-15, 2007.

[18] J-L Gaudiot, A. Sohn, “Data-Driven Parallel
Production Systems”. IEEE Transaction on Software
Engineering. V. 16. No 3, pg 281-293, 1990.

[19] P. Banerjee, J. A. Chandy, M. Gupta, E. W. Hodges
IV, J. G. Holm, A. Lain, “The Paradigm Compiler
for Distributed Memory Multicomputer”. IEEE
Computer, 28 (10), pp. 37-47, 1995.

[20] P. V. Roy, S. Haridi, “Concepts, Techniques, and
Models of Computer Programming”. MIT Press,
2004.

[21] S. Kaisler, “Software Paradigm”, Wiley-
Interscience, 1st Edition, 0471483478 John Wiley &
Sons, 2005.

[22] M. Gabbrielli, S. Martini, “Programming
Languages: Principles and Paradigms”. Series:
Undergraduate Topics in Computer Science. 1st
Edition, 2010, XIX, 440 p., Softcover. ISBN: 978-1-
84882-913-8.

[23] J. G. Brookshear. “Computer Science: An
Overview”. Ad. Wesley 2006.

[24] A. M. K. Cheng and J-R. Chen. “Response Time
Analysis of OPS5 Production Systems”. IEEE
Transactions on Knowledge and Data Engineering,
v. 12, n.3, pp. 391-409, 2000.

[25] J. A. Kang and A. M. K. Cheng. “Shortening
Matching Time in OPS5 Production Systems”. IEEE

Transaction on Software Engineering. V. 30, N. 7,
2004.

[26] C. L. Forgy, “RETE: A Fast Algorithm for the Many
Pattern/Many Object Pattern Match Problem”,
Artificial Intelligence N. 19, pg 17-37, 1982.

[27] P.-Y. Lee, A. M. Cheng, “HAL: A Faster Match
Algorithm”. IEEE Transaction on Knowledge and
Data Engineering, 14 (5), pp. 1047-1058, 2002.

[28] M. L. Scott, “Programming Language Pragmatics”,
2º Edition, p. 8, San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc, 2000.

[29] J. M. Simão, C. A. Tacla, P. C. Stadzisz, “Holonic
Control Meta-Model”. IEEE Transaction on System,
Man, and Cybernetics, Part A. V. 39, N. 5, 2009.
Doi. 10.1109/TSMCA.2009.2022060

[30] A.R. Pimentel; P.C. Stadzisz. “Application of the
Independence Axiom on the Design of Object-
Oriented Software Using the Axiomatic Design
Theory”. Journal of Integrated Design & Process
Science, v. 10, 2006.

[31] S. Ahmed. “CORBA Programming Unleashed”.
Sams Pub. 1998.

[32] D. Reilly, M. Reilly. “Java Network Programming
and Distributed Computting”. Addison-Wesley,
2002.

[33] E. Tilevich, Y. Smaragdakis. “J-Orchestra:
Automatic Java Application Partitioning” 16th
European Conf. on Object-Oriented Programming,
pg 178-204, B. Magnusson (Ed), Springer, 2002.

[34] S. Loke, “Context-Aware Pervasive Systems:
Architectures for a New Breed of Applications”.
Auerbach Publications, 2006.

[35] M. Díaz, D. Garrido, S. Romero, B. Rubio, E. Soler,
J. M. Troya, “A component-based nuclear power
plant simulator kernel: Research Articles”.
Concurrency and Computation: Practice and
Experience, 19 (5), pp. 593 - 607, 2007.

[36] S. M. Deen, “Agent-Based Manufacturing:
Advances in the Holonic Approach”, Springer, 2003,
ISBN 3-540-44069-0.

[37] H. Tianfield “A New Framework of Holonic Self-
organization for Multi-Agent Systems” IEEE
International Conference on System, Man and
Cybernetics, 2007.

[38] V. Kumar, N. Leonard, A. S. Morse, “Cooperative
Control”. New York: Springer-Verlag, 2005.

[39] A. S. Tanenbaum, M. van Steen, “Distributed
Systems: Principles and Paradigms”, (Book)
Prentice Hall, 2002.

[40] J. Giarratano and G. Riley, “Expert Systems:
Principles and Practice”. Boston, MA: PWS
Publishing”, 1993.

[41] S. Russel, P. Norvig, “Artificial Intelligence: A
modern Approach. Englewood Cliffs”, NJ: Prentice-
Hall, 2003.

[42] D. P. Miranker, “TREAT: A better Match Algorithm
for AI Production System” 6th National Conference
on AI, pp. 42-47, 1987.

Memoria COMTEL 2012 lista.pdf 16/10/2013 09:32:39 a.m. - 22 - ()

UIGV
23

COMTEL 2012
V Congreso Internacional de Computación y Telecomunicaciones

COMTEL 2013
V Congreso Internacional de Computación y Telecomunicaciones 19

[43] D. P. Miranker, B. Lofaso. “The organization and
Performance of a TREAT-based Production System
Compiler”. IEEE Transactions on Knowledge and
Data Engineering, III (1), pp. 3-10, 1991.

[44] D. P. Miranker, D. A. Brant, B. Lofaso, D. Gadbois.
“On the Performance of Lazy Matching in
Production System”. 8th National Conference on
Artificial Intelligence, pp. 685-692, AIII/The MIT
Press, 1992.

[45] D. Watt, “Programming Language Design
Concepts”. J. W. & Sons, 2004.

[46] T. Faison. "Event-Based Programming: Taking
Events to the Limit”. Apress, 2006.

[47] S. M. Tuttle, C. F. Eick, “Suggesting Causes of
Faults in Data-Driven Rule-Based Systems”. Proc.
of the IEEE 4th International Conference on Tools

with Artificial Intelligence, pg 413-416, Arlington,
VA., 1992.

[48] C. E Barros Paes, C. M. Hirata, “RUP Extension for
the Software Performance”. 32nd Annual IEEE
International Computer Software and Applications
(COMPSAC '08), pp 732-738, July 28 2008.

[49] G. R Watson, C. E. Rasmussen, B. R. Tibbitts, “An
integrated approach to improving the parallel
application development process”. IEEE
International Symposium on Parallel & Distributed
Processing, pp 1 - 8, 2009.

[50] I. Sommerville, “Software Engineering”, 8th Ed. Ad.
Wesley, 2004.

[51] Valença, G. Z. “Contribution to the materialization
of Notification Oriented Paradigm (NOP) by
framework and wizard.”, M.Sc. Thesis.
PPGCA/UTFPR. Curitiba-PR, 2012.

Memoria COMTEL 2012 lista.pdf 16/10/2013 09:32:39 a.m. - 23 - ()

